Task-Level Fiscal Policy for the Green Transition: Moving Beyond Binary Classifications

Shisham Adhikari (UC Davis)

July 27, 2025

Motivation: The Climate Transition Needs Better Tools

- Emissions must fall 45% by 2030, net-zero by 2050 to meet the 1.5°C goal [United Nations, 2023].
- Countries are deploying large-scale green subsidies (e.g., IRA, EU Green Deal).
- These raise three key macro questions:
 - ► How should subsidies be designed?
 - What trade-offs do they involve?
 - ► How should they be financed?
- Standard macro models treat sectors as either "green" or "dirty" missing the complexity of real-world production.

Motivation: A Task-Based View of Green Production

- Production is a continuum of tasks with varying environmental footprints.
- Example: EV production spans mining to assembly each task has different green potential.
- This paper:
 - Builds a GE model with a continuous greenness index.
 - ► Allows green vs. traditional input choice at the task level.
 - ► Captures task-level productivity and skill complementarity.
- Goal: Assess when green subsidies are effective, welfare-improving, and fiscally efficient.

Project Framework

1. Research Questions

- ► How effective are green input subsidies in promoting the use of green inputs that improve environmental quality?
- ▶ What are the welfare implications of green input subsidies?
 - Are green input subsidies always welfare-improving?
 - What is the least welfare-distorting method of financing these subsidies?

2. Methodology

- ▶ Adapt Acemoglu and Restrepo [2018]'s task-based model for the green transition.
- ► Calibrate the model to US labor market data.
- ▶ Perform consumption-equivalent welfare analysis to equalize welfare across states.

3. Findings

- ► The effectiveness of green input subsidies depends on the relative productivity of green versus traditional inputs.
- ▶ For the subsidy to be welfare-improving, the positive externality from green inputs must be substantial (equivalent to a 4.3% increase in consumption).
- ▶ Lump-sum tax is least distortionary, followed by capital income tax, and then labor income tax.

Literature and Contribution

1. Targeted Green Policies

- ▶ Taxes: Nordhaus and Boyer [2000]; Angelopoulos et al. [2010]; Fischer and Springborn [2011]; Heutel [2012]; Golosov et al. [2014]; Hassler et al. [2016]; Fried [2018]; Barrage and Nordhaus [2023]; Traeger [2023].
- ▶ Subsidies: Newell et al. [2019]; Palmer and Burtraw [2005]; Fischer and Newell [2008]; Hassler et al. [2020]; Casey et al. [2023]; Benkhodja et al. [2023].
- → *Contribution:* Relative productivity is relevant for green production/input subsidies' effectiveness.
- 2. Task-Based Models: Tools for Structural Transformation (Automation)
 - ▶ Key References: Acemoglu and Autor [2011]; Acemoglu and Restrepo [2018]; Hémous and Olsen [2021]; Vona et al. [2019]; Vona et al. [2018]; Vona [2021].
 - → Contribution: Adapt the task-based framework for the green transition.
- 3. Green Transition and Labor Market
 - Labor Productivity: Zivin and Neidell [2012]; Fullerton et al. [2012]; Hsiang et al. [2017]; Zivin and Neidell [2013].
 - ► Green Policies ⇒ Labor: Martinez-Fernandez et al. [2010]; Bowen and Kuralbayeva [2015]; Popp et al. [2020]; Vona et al. [2021].
 - → Contribution: Focus on green labor input and labor market policy.

How to think of task-based model?

Binary sectoral approach

Summary of the Paper

- Adapt Acemoglu and Restrepo [2018]'s task-based approach to analyze the green transition.
 - ▶ A continuum of tasks, ordered by a greenness index [Vona et al., 2018], is required to produce a good.
 - Each task can be performed using either green (labor) input or traditional (labor) input, with relative productivity varying across tasks [Vona et al., 2019].
- 2. Environmental quality improves when green inputs are used:

$$u(C, L^n, L^g) = \ln C + \eta \ln (1 - L^g - L^n) + \ln E \quad E = e^{\psi \int_{N-1}^N l_j^g dj}, \quad \psi > 0^1$$

- 3. Characterize the misallocation of green (labor) inputs by comparing the competitive equilibrium (CE) to the social planner's problem (SPP).
- Evaluate the effectiveness of subsidizing the cost of using green (labor) input.
- Calibrate the model to analyze how productivity schedules impact subsidy effectiveness.
- 6. Conduct welfare analysis of the subsidy and explore various funding mechanisms.

¹Aghion et al. 2024 uses a similar externality from underlying technology.

Task-based Modelling Choices

- Core Concept: Tasks are fundamental units of productivity; skills enable task performance.
- *Production:* Divided into tasks; labor with varying skills competes for tasks.
- Green Tasks: Measured by Vona et al. [2018] using O*NET data.

Greenness_k =
$$\frac{\text{#green specific tasks}_k}{\text{#total specific tasks}_k}$$

- ► High Greenness: Environmental Engineers
- ► Low Greenness: Mining
- Green skills: Based on General Green Skills measured by Vona et al. [2019].

References

Model Structure

• Firms:
$$Y = K^{\alpha}L^{1-\alpha}$$
, $L = \left(\int_{N-1}^{N} t_j^{\frac{\chi-1}{\chi}} dj\right)^{\frac{\Lambda}{\chi-1}}$, and $t_j = \gamma_j^n l_j^n + \gamma_j^g l_j^g$.

Everything else standard except in task-based model,

$$L = \left(\left(\int_{N-1}^J (\gamma_j^n)^{\chi-1} \, dj \right)^{\frac{1}{\chi}} \left(L^n \right)^{\frac{\chi-1}{\chi}} + \left(\int_J^N (\gamma_j^g)^{\chi-1} \, dj \right)^{\frac{1}{\chi}} \left(L^g \right)^{\frac{\chi-1}{\chi}} \right)^{\frac{\chi}{\chi-1}}.$$

Factor share influenced by J is endogeneously determined.

• Key Assumption: $\frac{\gamma_j^g}{\gamma_j^n}$ is continuously differentiable and increasing in j.²

²Definition of green skills based on Vona et al. [2019] are based on the skills required for green jobs in Vona et al. [2018].

Competitive equilibrium vs. Social Planner's Task Allocation

Market allocates tasks based on relative effective costs $J: \frac{\gamma_J^g}{\gamma_L^n} = \frac{W_g}{W_n}$.

• There exists an environmental benefit of using green inputs on performing tasks:

Households:
$$u(C, L^n, L^g) = \ln C + \eta \ln(1 - L^g - L^n) + \ln E \quad E = e^{\psi \int_{N-1}^N l_j^g dj}, \quad \psi > 0.$$

Given externality, a Social Planner allocates more tasks to green input than what a CE would.

SP's non-green input SP's green input N

Implementation and Effectiveness

1. Implement $J_{sp} < J_{ce}$ using the following task-specific green input subsidy:³

$$\tau_j^g = \begin{cases} 0 & \text{if } j \leq J_{sp} \\ 1 - \frac{Y_{L^n}}{Y_{L^g}} \frac{\gamma^n(j)}{\gamma^g(j) + \psi} \geq 0 & \text{if } j > J_{sp} \end{cases}$$

Effectiveness of the subsidy depends on the relative productivity schedule:

$$J: \frac{\gamma_J^g}{\gamma_J^n} = \frac{W_g}{W_n} \implies d \ln J = \frac{1}{\epsilon_{\bar{\alpha},J}} (d \ln \omega), \quad \text{where } \epsilon_{\bar{\alpha},J} = \frac{d \ln \left(\frac{\gamma_J^s}{\gamma_J^n}\right)}{d \ln J}.$$

³Intuition: The subsidy increases the cost-competitiveness of green labor for tasks where it's less productive than non-green labor, capturing the added environmental benefits.

Standard RBC parameters: $\alpha = 0.33$. $\beta = 0.99$. $\delta = 0.025$. n = 1; other key parameters:

Parameter	Value	Description	Source
X	1.5	Substitution elasticity between	Papageorgiou et al. [2017],
		green and traditional input	Casey et al. [2023]
ψ	0.4	Externality weight ⁴	Angelopoulos et al. [2010]

Quantitative Analysis

-000

- Relative productivity schedule formulation: $\frac{\gamma_j^g}{\gamma_i^n} = \frac{A \cdot j^{v_g}}{B \cdot (1 j)^{v_n}};$ normalize $\gamma_j^n = 1 \implies \frac{\gamma_j^g}{\gamma_i^n} = A \cdot j^{v}.$
- Calibration based on:
 - Vona et al. [2018] findings that green occupations are, on average, higher-skill and less routine-intensive than non-green occupations.
 - Productivity elasticity $\nu = 2.12$ for routine intensity (in line with Acemoglu et al. [2020]) and $\nu = 0.67$ for skill intensity (in line with Marczak et al. [2022]).
- Parameters chosen to match:
 - Green employment estimate of 19.4% [Bowen et al., 2018].
 - Green wage premium of 2% [Shibata et al., 2022].

⁴Higher bound typically assigned to public goods in related utility functions; = 1.4% increase in consumption.

ntroduction Task-based model Quantitative Analysis Conclusion References 0000 0000 0000 0000

Simulation Results: Effectiveness of Green Input Subsidy

Goal: Subsidize green input cost to allocate more tasks to green inputs, i.e. decrease J

Effectiveness of Green Input Subsidy: Concave vs Convex For Convex of /of 0.7 P 0.5 Size of the Green Input Subsidy

Fig 1: Relative productivity between green and trad. inputs across tasks

Fig 2: Effectiveness of subsidy in decreasing J

Key Findings: The effectiveness of green input subsidies depends critically on the relative productivity of green versus traditional inputs and the initial task allocation threshold, J.

-0.3

$$\frac{\partial W}{\partial J} = \underbrace{\frac{\partial I}{\partial J} - \frac{\eta}{1 - L^n - Lg} \left[\frac{\partial L^s}{\partial J} + \frac{\partial L^n}{\partial J} \right]}_{\text{productivity effect}} + \underbrace{\psi \cdot \frac{\partial L^s}{\partial J}}_{\text{environmental benefit}} + \underbrace{\psi \cdot \frac{\partial L^s}{\partial J}}_{\text{environmental benefit}}$$

Fig 3: Welfare for different values of externality parameter ψ

Externality of Green-skilled Labor (a)

Main takeaway: \exists productivity and environmental benefit tradeoff; the positive externality needs to be greater than $\psi = 1.21 (\equiv 4.3\% \uparrow \text{ in } C)$ to be welfare-improving.

Welfare analysis: comparison of different financing methods

Calculate the necessary % change in initial consumption ω to equalize welfare across states.

$$\{[ln(\omega C) + \eta \ln(1 - L^g - L^n) + \psi L^g] - [ln(C') + \eta \ln(1 - L^{g'} - L^{n'}) + \psi L^{g'}]\} = 0, \quad W_l = (1 - \omega) * 100$$

Fig 4: Tax Sizes for Different Subsidy Rates

Fig 5: Welfare costs for financing methods

[→] Main takeaway: Lump-sum tax is the least welfare-distorting financing tool.

Conclusion

- Introduce a task-based GE model with a continuous greenness index.
- Core insight: Markets allocate too few green tasks ⇒ need for corrective subsidies.

Policy findings:

- ▶ Design: Focus on sectors where green inputs are nearly as productive; support with R&D/infrastructure.
- ▶ Welfare: A 5% subsidy raises welfare if $\psi > 1.2$; gains increase with task substitutability (χ) .
- ▶ *Financing:* Lump-sum taxes are least distortionary; labor taxes most.
- Implication: Well-targeted subsidies can green production without heavy fiscal cost.
- **Next steps:** Extend model to include capital, energy, and macro policy tools.

Understanding Endogeneous threshold

• Endogenous task-threshold: $J: \frac{\gamma_J^g}{\gamma_J^n} = \frac{W_g}{W_n} = \left(\frac{L^n}{L^g}\right)^{\frac{1}{\chi}} \left(\frac{\int_J^N (\gamma_j^g)^{\chi-1} dj}{\int_{M-1}^J (\gamma_i^n)^{\chi-1} dj}\right)^{\frac{1}{\chi}}$.

Understanding the endogenous threshold J.

Structural Estimation Equation of χ

$$d \ln s_{LS}^* = -\left[s_{L^n}^T \cdot \left(-(1-\chi) + s_K^f (1-\sigma)\right)\right] d \ln \gamma^n - \left[(1-\chi) + s_{LS}^T \cdot \left(-(1-\chi) + s_K^f (1-\sigma)\right)\right] d \ln \gamma^g$$

$$\left[\left(w^n\right)^{1-\chi} \left(w^n\right)^{1-\chi} \right]$$

$$+ \underbrace{\left[\frac{-\gamma_{J}^{(\chi-1)}}{\int_{J}^{N} (\gamma_{J}^{g})^{\chi-1} dj} + \frac{1}{1-\chi} \cdot \frac{\left(\frac{W^{n}}{\gamma_{J}^{n}}\right)^{1-\chi} - \left(\frac{W^{g}}{\gamma_{J}^{g}}\right)^{1-\chi}}{P^{L}(i)^{1-\chi}} \cdot (-(1-\chi) + s_{K}^{f}(1-\sigma)) \right]}_{B_{1}} dJ$$

$$+\underbrace{\left[\frac{\gamma_{N}^{(\chi-1)}}{\int_{J}^{N}(\gamma_{j}^{g})^{\chi-1}dj} + \frac{1}{1-\chi} \cdot \frac{\left(\frac{W^{g}}{\gamma_{j}^{g}}\right)^{1-\chi} - \left(\frac{W^{n}}{\gamma_{j}^{g}}\right)^{1-\chi}}{P^{L}(i)^{1-\chi}} \cdot \left(-(1-\chi) + s_{K}^{f}(1-\sigma)\right)\right]}_{\beta_{2}}dN$$

$$+\underbrace{\left[s_{L^n}^T\cdot (-(1-\chi)+s_K^f(1-\sigma))\right]}_{\beta_3}dW^n +\underbrace{\left[\frac{1-\chi}{W^g}+s_{L^g}^T\cdot (-(1-\chi)+s_K^f(1-\sigma))\right]}_{\beta_4}dW^g -\underbrace{\left[s_K^f(1-\sigma)\right]}_{-\beta_5}d\ln R.$$

Here, similar to Baek and Jeong [2023],
$$\sigma = 1 + \frac{\hat{\beta_5}}{s_V^f}$$
 $\chi = \frac{\hat{\beta_3} + \hat{\beta_5} s_{Ln}^T}{s_{Ln}^T}$.

References I

United Nations. Net-zero coalition, 2023. URL

https://www.un.org/en/climatechange/net-zero-coalition.

- Daron Acemoglu and Pascual Restrepo. The race between man and machine: Implications of technology for growth, factor shares, and employment. *American Economic Review*, 108(6): 1488–1542, 2018.
- William D. Nordhaus and Joseph Boyer. Warming the World: Economic Models of Global Warming. MIT Press, Cambridge, MA, 2000.
- Konstantinos Angelopoulos, George Economides, and Apostolis Philippopoulos. What is the best environmental policy? taxes, permits and rules under economic and environmental uncertainty. 2010.
- Carolyn Fischer and Michael Springborn. Emissions targets and the real business cycle: Intensity targets versus caps or taxes. *Journal of Environmental Economics and Management*, 62(3):352–366, 2011.

References II

- Garth Heutel. How should environmental policy respond to business cycles? optimal policy under persistent productivity shocks. *Review of Economic Dynamics*, 15(2):244–264, 2012.
- Mikhail Golosov, John Hassler, Per Krusell, and Aleh Tsyvinski. Optimal taxes on fossil fuel in general equilibrium. *Econometrica*, 82:41–88, 2014.
- John Hassler, Per Krusell, and Anthony A. Smith Jr. Environmental macroeconomics. In *Handbook of Macroeconomics*, volume 2, pages 1893–2008. Elsevier, Amsterdam, 2016.
- Stephie Fried. Climate policy and innovation: A quantitative macroeconomic analysis. *American Economic Journal: Macroeconomics*, 10(1):90–118, 2018.
- Lint Barrage and William D. Nordhaus. Policies, projections, and the social cost of carbon: Results from the dice-2023 model. 2023.
- Christian P Traeger. Ace—analytic climate economy. *American Economic Journal: Economic Policy*, 15(3):372–406, 2023.

References III

- Richard G. Newell, William A. Pizer, and Daniel Raimi. Us federal government subsidies for clean energy: Design choices and implications. *Energy Economics*, 80:831–841, 2019.
- Karen Palmer and Dallas Burtraw. Cost-effectiveness of renewable electricity policies. *Energy Economics*, 27:873–894, 2005.
- Carolyn Fischer and Richard G. Newell. Environmental and technology policies for climate mitigation. *Journal of Environmental Economics and Management*, 55:142–162, 2008.
- John Hassler, Per Krusell, Conny Olovsson, and Michael Reiter. On the effectiveness of climate policies. Working paper, 2020.
- Gregory Casey, Woongchan Jeon, and Christian Traeger. The macroeconomics of clean energy subsidies. 2023.
- Mohamed Tahar Benkhodja, Vincent Fromentin, and Xiaofei Ma. Macroeconomic effects of green subsidies. *Journal of Cleaner Production*, 410:137166, 2023.

References IV

- Daron Acemoglu and David Autor. Skills, tasks and technologies: Implications for employment and earnings. In *Handbook of labor economics*, volume 4, pages 1043–1171. Elsevier, 2011.
- David Hémous and Morten Olsen. The rise of the machines: Automation, horizontal innovation and income inequality. *American Economic Journal: Macroeconomics*, 2021. In press.
- Francesco Vona, Giovanni Marin, and Davide Consoli. Measures, drivers, and effects of green employment: Evidence from us local labor markets, 2006–2014. *Journal of Economic Geography*, 19(5):1021–1048, 2019.
- Francesco Vona, Giovanni Marin, Davide Consoli, and David Popp. Environmental regulation and green skills: An empirical exploration. *Journal of the Association of Environmental and Resource Economists*, 5(4):713–753, 2018.

References V

- Francesco Vona. *Labour Markets and the Green Transition: a practitioner's guide to the task-based approach*. Publications Office of the European Union, Luxembourg, 2021. ISBN 978-92-76-42260-0. doi: 10.2760/65924. JRC126681.
- Joshua S. Graff Zivin and Matthew Neidell. The impact of pollution on worker productivity. *American Economic Review*, 102(7):3652–3673, 2012.
- Don Fullerton, Garth Heutel, and Gilbert E. Metcalf. Does the indexing of government transfers make carbon pricing progressive? *American Journal of Agricultural Economics*, 94(2):347–353, 2012.
- Solomon Hsiang, Robert Kopp, Amir Jina, James Rising, Michael Delgado, Shashank Mohan, D.J. Rasmussen, Robert Muir-Wood, Paul Wilson, Michael Oppenheimer, Kate Larsen, and Trevor Houser. Estimating economic damage from climate change in the united states. *Science*, 356(6345):1362–1369, 2017.
- Joshua S. Graff Zivin and Matthew Neidell. Environment, health, and human capital. *Journal of Economic Literature*, 51(3):689–730, 2013.

References VI

- Cristina Martinez-Fernandez, Carlos Hinojosa, and Gabriela Miranda. Greening jobs and skills: labour market implications of addressing climate change. 2010.
- Alex Bowen and Karlygash Kuralbayeva. Looking for green jobs: the impact of green growth on employment. *Grantham Research Institute Working Policy Report. London: London School of Economics and Political Science*, pages 1–28, 2015.
- David Popp, Francesco Vona, Giovanni Marin, and Ziqiao Chen. The employment impact of green fiscal push: evidence from the american recovery act. Technical report, National Bureau of Economic Research, 2020.
- Francesco Vona et al. *Labour markets and the green transition: a practitioner's guide to the task based approach*, volume 126681. Publications Office of the European Union, 2021.
- Chris Papageorgiou, Marianne Saam, and Patrick Schulte. Substitution between clean and dirty energy inputs: A macroeconomic perspective. *Review of Economics and Statistics*, 99 (2):281–290, 2017.

References VII

- Daron Acemoglu, Andrea Manera, and Pascual Restrepo. Does the us tax code favor automation? NBER Working Paper 27052, National Bureau of Economic Research, April 2020. URL https://www.nber.org/papers/w27052.
- Martyna Marczak, Thomas Beissinger, and Franziska Brall. Technical change, task allocation, and labor unions. IZA Discussion Paper 15632, Institute of Labor Economics (IZA), October 2022. URL

https://econpapers.repec.org/RePEc:iza:izadps:dp15632.

- Alex Bowen, Karlygash Kuralbayeva, and Eileen L. Tipoe. Characterising green employment: The impacts of 'greening' on workforce composition. *Energy Economics*, 72:263–275, 2018. ISSN 0140-9883. doi: https://doi.org/10.1016/j.eneco.2018.03.015. URL https://www.sciencedirect.com/science/article/pii/S0140988318300963.
- Ippei Shibata, Rui Mano, and Katharina Bergant. From polluting to green jobs: A seamless transition in the u.s.? *IMF Working Papers*, 2022:1, 07 2022. doi: 10.5089/9798400215094.001.

References VIII

Seungjin Baek and Deokjae Jeong. Automation, human task innovation, and labor share: Unveiling the role of elasticity of substitution. 2023.