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ABSTRACT:

This paper develops a task-based general-equilibrium model to evaluate targeted
green-input subsidies, offering new insights into fiscal policy for the green transition. Pro-
duction is represented as a continuum of tasks ranked by “greenness,” moving beyond
the conventional “green vs. dirty” sectoral split. By capturing task-level heterogeneity, the
model shows that competitive markets allocate too few tasks to green inputs relative to a
planner who internalizes environmental externalities, justifying corrective subsidies. The
framework addresses three policy-relevant questions: (i) Design—how should subsidies
vary across tasks to maximize reallocation toward green methods? (ii) Trade-offs—what
productivity cost, if any, accompanies environmental gains? (iii) Financing—which tax
base funds subsidies with the least distortion? Key findings are: (1) subsidies work best
when the productivity gap between green and traditional inputs is small, (2) ina U.S. cal-
ibration, welfare improves only if the externality parameter ¢ is roughly three times the
standard public-goods benchmark (1.2 vs. 0.4), implying a 4.3 % consumption-equivalent
threshold, and (3) lump-sum taxes impose the smallest welfare loss, followed by capital
taxes, while labor-income taxes are most distortionary. By integrating fiscal policy de-
sign with macro-economic outcomes, this task-level approach provides a more realistic
foundation for climate policy, guiding interventions that align environmental goals with

macroeconomic efficiency.
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1 Introduction

Mitigating climate change requires rethinking how we produce goods and use energy. To
meet the Paris Agreement’s 1.5°C target, global emissions must fall by 45% by 2030 and
reach net-zero by 2050 (United Nations, 2023). In response, governments have adopted
large-scale policy packages—such as the U.S. Inflation Reduction Act, Canada’s Sustain-
able Jobs Plan, and the EU Green Deal—to achieve carbon neutrality by mid-century. A
central tool in these packages is targeted subsidies that shift investment toward cleaner,
more sustainable production (IRA, 2023). Implementing these subsidies effectively raises
three questions: (i) Design—which subsidy structure maximizes impact? (ii) Trade-offs—what
productivity cost, if any, accompanies environmental gains? and (iii) Financing—how can
subsidies be funded with minimal distortion? This paper answers these questions using
a general-equilibrium model.

Most climate-macro models split the economy into “green” and “dirty” sectors, then
recommend taxing the latter to redirect resources to the former. In reality, however, pro-
duction involves a continuum of tasks with varying environmental footprints. For exam-
ple, building an electric vehicle involves tasks from mineral extraction to final assembly,
each with distinct impacts. A binary sectoral classification obscures this complexity and
can misguide policy design. To address this gap, I decompose production into a contin-
uum of tasks, each indexed by its “greenness,” and allow each task to be performed with
either green or traditional inputs.

I build on the framework of Acemoglu and Restrepo (2018) from the automation lit-
erature, but introduce three key changes. First, I replace their complexity index with a
greenness index (Vona, Marin, Consoli, and Popp, 2018a) that measures each task’s envi-
ronmental impact. Second, I allow two types of inputs—green (which generate positive
environmental spillovers) and traditional (which do not)—to capture externalities. Third, I
incorporate task-level comparative advantage: green-skilled labor is relatively more pro-
ductive in tasks with higher greenness scores, leading to endogenous task allocation.

This structure uncovers a market failure: competitive markets allocate too few tasks
to green inputs, whereas a planner who internalizes environmental benefits would assign
significantly more tasks to green methods. That misallocation motivates targeted green
subsidies. Moreover, the task-level setup directly addresses the three guiding questions.
Subsidies can be tailored to task productivity gaps (Design); the model quantifies the pro-
ductivity loss versus environmental benefit for each task (Trade-offs); and a government
budget constraint allows comparison of lump-sum, labor-income, and capital-income fi-

nancing (Financing).



The model delivers clear answers. First, green-input subsidies are most effective
when the productivity gap between green and traditional inputs is narrow. Policymak-
ers should thus target sectors where green methods already approach traditional pro-
ductivity and complement subsidies with R&D or infrastructure to narrow remaining
gaps. Second, calibrated to U.S. data, a 5% green-labor subsidy raises welfare only if the
environmental externality parameter ¢ exceeds roughly 1.2—three times the standard
public-goods benchmark—implying a 4.3% consumption-equivalent gain. The elasticity
of substitution among tasks x, moderates this threshold: higher y lowers the required v
by easing task reallocation. Finally, among lump-sum, labor-income, and capital-income
taxes, lump-sum financing is least distortionary, capital taxes are second-best, and labor
taxes are most costly. This ranking reverses the classic Chamley-Judd result (Chamley,
1986; Judd, 1985) once task-level externalities are introduced: taxing labor directly raises
the cost of greener tasks, whereas capital taxes spread distortions more evenly.

These findings provide a rigorous, task-level framework for assessing green subsi-
dies. By moving beyond a simple “green versus dirty” split, the model fills a key gap in
climate-macro research and offers practical guidance for designing and funding climate

policies that balance environmental and economic objectives.

2 Literature Review

The task-based model, developed by Acemoglu and Autor (2011), fundamentally recon-
ceptualizes production by focusing on job tasks rather than traditional production fac-
tors. This framework, which allocates tasks based on comparative advantage, has be-
come instrumental for studying structural economic transformations, particularly in au-
tomation research (Acemoglu and Autor (2011); Acemoglu and Restrepo (2018); Hémous
and Olsen (2021)). While most studies examine automation’s effects on wage distribution
and labor share, applied microeconomists have adapted task-based approaches to char-
acterize green jobs and skills using granular occupational data from sources like the Oc-
cupational Information Network (O*NET) (Consoli, Marin, Marzucchi, and Vona (2016);
Vona, Marin, and Consoli (2019); Vona (2021)). Bontadini and Vona (2020) and Vona et al.
(2018a) further refine these measures. Despite these empirical advances, the theoreti-
cal adaptation of task-based frameworks to evaluate green policies remains underdevel-
oped—a critical gap this paper addresses by incorporating environmental externalities
into the task-based model.

Traditional climate-macro models primarily approach environmental externalities



through taxation mechanisms (Nordhaus and Boyer (2000); Angelopoulos, Economides,
and Philippopoulos (2010); Fischer and Springborn (2011); Heutel (2012); Golosov, Has-
sler, Krusell, and Tsyvinski (2014); Hassler, Krusell, and Jr (2016); Fried (2018); Barrage
and Nordhaus (2023); Traeger (2023)). However, recent climate policies, exemplified by
the U.S. Inflation Reduction Act, increasingly emphasize targeted subsidies as primary
policy instruments. Newell, Pizer, and Raimi (2019) provide a comprehensive overview
of green energy subsidies, noting their historical underrepresentation compared to carbon
taxes. Studies such as Hassler, Krusell, Olovsson, and Reiter (2020) and Casey, Jeon, and
Traeger (2023) explore subsidies” impact on green energy RD and production, finding po-
tential increases in dirty energy use. Research by Palmer and Burtraw (2005) and Fischer
and Newell (2008) suggests that, although subsidies reduce emissions in static models,
they are less efficient than methods like emissions pricing. Similar conclusions are drawn
in dynamic settings by Gerlagh and der Zwaan (2006) and Kalkuhl, Edenhofer, and Less-
mann (2013). Benkhodja, Fromentin, and Ma (2023) compare different green subsidies
and find that subsidizing labor costs of green firms is most effective in reducing pollution.
Building on this literature, the paper evaluates green-input subsidies within a task-based
framework, focusing on three dimensions—design, trade-off, and financing.

Labor market policies represent a critical yet understudied dimension of the green
transition, as a skilled workforce is essential for diffusing climate-friendly technologies
(Tyros, Andrews, and de Serres (2024)). While most climate-macro research prioritizes
capital and technology investments, labor market interventions are equally important,
particularly regarding transitional unemployment during decarbonization (Bluedorn, Hansen,
Noureldin, Shibata, and Tavares (2023)). Existing research at the intersection of envi-
ronmental and labor economics explores climate change’s effects on labor supply and
productivity (Zivin and Neidell (2012); Hsiang, Kopp, Jina, Rising, Delgado, Mohan, Ras-
mussen, Muir-Wood, Wilson, Oppenheimer, Larsen, and Houser (2017)). Studies also in-
vestigate the distributional effects of environmental policies, linking outcomes to changes
in relative demand for capital and labor (Araar, Duclos, Rivest, and Fortin (2011); Rausch,
Metcalf, Reilly, and Paltsev (2011); Fullerton, Heutel, and Metcalf (2012); Goulder, Haf-
stead, Kim, and Long (2019)). However, explicit examination of effective policy design to
reallocate labor from brown to green jobs is a crucial step for achieving climate goals (Ty-
ros et al. (2024)). This paper addresses this gap by proposing policies that optimize labor
allocation, providing direct policy relevance. While I focus primarily on labor inputs due
to the availability of occupational greenness indices from O*NET, the key insights apply

to any production factor for which similar task-level data are available.



3 Model

I modify the Acemoglu and Restrepo (2018)’s task-based approach, where a unique fi-
nal good is produced combining capital and labor services in a cobb-douglas manner,
where the labor services is produced using a continuum of measure one of tasks, ¢;; in-
dexed by j € [N — 1, N]. On the household side, they supply “green” and “traditional”
production factor, in my case two types of skills-green and traditional. These skills are
identified in Vona et al. (2018a). I establish a pattern of comparative advantage where
tasks are ranked by their greenness, with green-skilled workers being more productive
than traditional workers in greener tasks. This classification is conceptually consistent, as
Vona et al. (2018a) identify “green skills” precisely based on the capabilities required to
perform environmentally sustainable tasks.

The model solution focuses on the equilibrium allocation of skills across tasks, de-
termined by an endogenous threshold J;. Tasks below this threshold are performed by
traditional workers, while those above are performed by green-skilled workers. This
allocation has real-world parallels: the lowest range of tasks corresponds to explicitly
carbon-intensive occupations (e.g., coal miners, oil rig workers); the intermediate range
represents environmentally neutral jobs (e.g., office clerks, retail salespersons); and the
highest range encompasses occupations central to economic decarbonization (e.g., solar

power engineers, carbon auditors, sustainability officers).

3.1 Discussion of Modeling Choices and Empirical Evidence

This paper adapts an existing model, aka Acemoglu and Restrepo (2018)’s task-based
model, studying the structural change of automation to study another key structural
transformation on its way—green transition. In this framework, labor is differentiated
between “green” and “traditional” based on workers’ possession of skills necessary to
perform tasks in an environmentally sustainable manner. Importantly, our approach de-
composes a sector into its constituent tasks and ranks these tasks by a continuous green-
ness index. This method captures heterogeneity that is lost in a binary green-dirty classi-

fication.
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Figure 1. Comparison of Binary Classification vs. Task-based Approaches

3.1.1 Why task-based approach?

Theoretical Basis: Canonical production functions assume fixed roles for production fac-
tors. However, the green transition involves fundamental shifts in production methods
and required skills. A task-based approach offers granularity by separating produc-
tion tasks from factors, enabling dynamic reallocation in response to technological and
environmental changes. Moreover, by introducing comparative advantage at the task
level—where green-skilled labor is relatively more productive in tasks with higher green-
ness scores—we better capture the nuances of the green transition. This is not merely
a reclassification into new sectors; rather, it provides a deeper, continuous measure of
environmental performance at the task level.

Data Alignment: According to Vona (2021), the task-based approach provides accurate
estimates of green employment. In contrast, binary definitions of green jobs often yield

less reliable results.

3.1.2 Greenness Index

The greenness index, calculated by Vona et al. (2018a), quantifies occupations” environ-
mental focus using task data from O*NET. O*NET categorizes tasks into general and spe-
cific categories, with the latter further classified into green and traditional tasks through
the Green Task Development Project. For example, Metal Sheet Workers perform both



green tasks (crafting components for wind turbines) and traditional tasks (operating com-

puterized metalworking equipment). The greenness of an occupation £ is measured as:

#green specific tasks,

Greenness;, = = -
"7 total specific tasks,

This metric reflects an occupation’s contribution to environmental sustainability (Vona
and Consoli, 2015). Occupations like Chief Sustainability Officer and Solar Power In-
stallers rank high in greenness due to their specialized green tasks. Those with a mix of
green and traditional tasks, like Electrical Engineers and Roofers, fall in the middle. Oc-
cupations primarily engaged in traditional tasks with sporadic environmental tasks, such

as Construction Workers, score lower on the greenness scale.

3.1.3 Green Skills

Following Vona and Consoli (2015), the greenness indicator forms the foundation for a
Green General Skills index (GGS), which identifies skills more prevalent in green occupa-
tions. In my framework, the labor force is split into “green-skilled labor,” which possesses

these skills, and “traditional labor,” which does not.

3.1.4 Green Skills Environmental Benefits

I assume positive environmental externalities from deploying green inputs rather than
traditional inputs across all tasks. This assumption is justified either by positing that
green-skilled labor implicitly employs greener technologies, as commonly assumed in
the literature (Aghion, Barrage, Hémous, and Liu, 2024), or through the positive exter-
nalities of green-skills training documented in management research Usman, Rofcanin,
Ali, Ogbonnaya, and Babalola (2023). These positive externalities may include spillover
benefits such as improved public health, increased innovation, and enhanced long-term

environmental quality.

3.2 Set-up

Now, I have justified my modeling choices, I set-up and solve my theoretical model.

3.2.1 Households

I use a representative household model to capture the demand side of the economy, sup-
plying both green and traditional inputs. Alongside a log-linear utility over consumption



and hours worked, I assume there is positive environmental externality of using greener
technology, in my case green-skilled labor, over a traditional one. The representative

household’s problem becomes:

max Zﬁtu(@, N[’ Nf) = Zﬁt(ln Cy+nIn(l1 — N/ — N*) + InE)

n g
Co.Ker1, NIWNY 5 t=0

st. Cy + Kyg = WIN! + WIN? + [Ry — (1 + 0)| K, V.

where C; is consumption, N/ and N;* are aggregated working hours of green and tra-
ditional workers respectively. Additionally, £ is a positive externality term from using
green input which household takes as given, but it evolves as specified by the following

form:
N ;9 .
B = lnted >,

Here, ¢ > 0 captures the additional environmental benefits that arise from using
green inputs rather than traditional ones in task production. In other words, every unit
of green labor used to perform a task generates a positive spillover—such as reduced pol-
lution or improved public health—that is not reflected in market prices. For simplicity,
we assume that this externality enters the household’s utility function additively, so that
the benefit from using green labor is directly proportional to the amount employed. Since
tirms do not internalize these external benefits when setting market prices, the compet-
itive equilibrium fails to account for the full social value of green labor, leading to an
inefficient allocation of tasks. The household’s first-order conditions (FOCs) are derived
from this private optimization problem and thus do not incorporate the positive external-

ity, which only affects overall efficiency. The household’s FOCs become:
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3.2.2 Firms

The final good Y; is produced by competitive firms combining capital and labor services
in a cobb-douglas manner where labor services is produced based on the Acemoglu and
Restrepo (2018)’s task-based approach combining a continuum of measure one of tasks,
t;.indexed by j € [N — 1, N].

Y, =KL



Solving for the profit maximization problem simply gives:

Y,
Rt:&'?tt and Wt:(l—a)z (1)

3.2.3 Labor Services Producer

The labor services L, is produced based on Acemoglu and Restrepo (2018)’s task-based

approach using a continuum of measure one of intermediate inputs, or tasks, ¢;; indexed

by j €[N —1,N]
N x—1 ﬁ
L - ( / " dj) . @)
N—-1

The tasks span from NV —1 to N, resulting in a constant total number of tasks. The param-
eter y > 0 signifies the elasticity of substitution between tasks.

The profit maximization problem of the labor services provider is:

N
max WiLy — / pjitidj  subject to equation (2).
it N-1

Under perfect competition, the demand function for task j is:

—X
Djt
to=(2L) L.

The price of aggregated wage W, is given by:

N —
W, = (/ pj;X d]) .
N-1

Based on the derivation in A.3, the price of aggregated task is given by:

|

3.2.4 Tasks producers

1

Jt n o\ x—1 N g \ x—1 T—x
v ) . / < 7 ) .
d) + dj . 3)
/N—l (Wn,t Jt Wg,t

I arrange tasks between [V — 1, N] based on greenness index as computed in Vona, Marin,
Consoli, and Popp (2018b) for each occupation (a bundle of tasks, the closest measurable

measure of task). Each tasks j can be produced using either green input /7, or traditional



input [7,, but the two differ both in their relative productivity across tasks and environ-

5t
mental externality. The production function of a generic intermediate input j is:

b= anl?,t j ljt
It is crucial to note that this production function allows each task to be performed by ei-
ther green or traditional input, however, the comparative advantage of each type differs
across tasks. For each type of input, i € {g,n}, 7} represents their task-specific produc-
tivity /skills for each task j. These variations in comparative advantage play a significant
role in the model. Based on the production structure, the unit costs of producing task j

with traditional and green inputs respectively are:

n [ I tn [ [ tg
Pl = — and pJ, = ——.
J,t o Jht ,y]g

3.2.5 Assumption 1: J is continuously differentiable and strictly increasing in j

Tasks are ranked by their greenness index, and each can be done by either green or tradi-
tional labor. As explained previously, since green skills are defined by this index, green-
skilled labor has a growmg advantage over traditional labor for tasks with a higher green-
ness index, meaning - 2 s increasing in j.

Lemma 1. In any équzlzbrtum there exist J; € (N — 1, N) such that for any j < J;, 1}, = 0
and for any j > Jy, I, = 0.1

Because the allocation of tasks to factors is cost-minimizing and because 1s (strictly)
increasing, there exists a threshold J; such that all tasks below the threshold are produced
with tradition labor and those above it will be produced with green-skilled labor. It is de-

termined in the model as:

Wn WQ Wn g
Sr= = iy = @
’th ,th Wt /th

Based on the derivation in A.3, and the demand for task in the above section, the factor

'The proof is similar to Acemoglu and Zilibotti (2001).
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Figure 2. The task space indexed based on greenness(j)

demand are given by:

(7?)X71th_XLt if j € [N —1,J
I, = ()
0 if j € (J,, N]
0 ifje[N—-1,J
g = el LA ©
(VW)W Ly i j € (Jy, N]
Thus, the production function of the task producer j takes the following form:
e, ifje [N -1,
o= ) Dl HIEW LA )
7; lj7t7 if j € (Ji, N

3.2.6 Aggregation

Here L} and L{ is derived by aggregating the demand for green and traditional labor
from this expression, I have the following aggregate demand for the two types of labor*:

Jt
L= L / (7)< dj ®)
N—-1
n Ly i ’ n\x—1 j: i
= W' = I ('Yj X dj = Lin )
t N—-1
N
L = Lwi / (9 dj (10)
Jt

1 1
g L\ x N a\x—1 1: x .
— Wy = 79 . <7j) dj ) = L. (11)
t t

2Look Appendix A .4 for the derivation.
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Here, the ratio of aggregate demand for green to traditional labor is given by:

L [yt (W)

Ly [ (eptdf AW

N—-1\17

The resulting relative factor productivity for labor is:

1 N IR
wr o\ LY N () dj

3.2.7 Optimal aggregated output

Aggregating across tasks gives the following formula for the aggregate labor services:

X

L - (( [ opra) s ([aos) <Lf>">f) o m

The equation resembles a CES production function, where the combining two types
of labor, with elasticity of substitution x, generates aggregate output. The crucial insight
in the task-based production is that the share parameter for each labor is endogenous that
depends on several factors: the task distribution threshold (J;), task-specific productivity
schedules (7, and v,), and the elasticity of substitution . Increasing .J; directs more tasks

to traditional labor relative to green-skilled labor in equilibrium.

3.2.8 Competitive Market Task Allocation

Based on the cost-minimizing task cut-off condition in equation (4) and the relative wage
expression in equation (12), we derive the following expression for the endogenously

determined task allocation threshold in competitive equilibrium:

1

1 N _ . x

e W () (D "
v owr o\ L (Xt dg

3See appendix A .4 for the derivation.
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Figure 3. Understanding the endogenous threshold .J

The figure illustrates how the threshold J governs task allocation: although any task can
be performed by either green or traditional inputs, a value of J = 1 implies all tasks are
performed by traditional inputs, while J = 0 implies all are done by green inputs. In
equilibrium, J lies strictly between 0 and 1, reflecting a cost-driven allocation of tasks
between the two input types.

Here, the left hand side of eq(14) is continuous and increasing in .J; by assumption
3.2.5 and the right hand side is decreasing in J;, which implies the above equation gives

a unique solution J.. defined by the implicit function:

1
1 N -1 7 X
v, (LN [ L) " n
F=—i‘(L_§7) s | st Je= (LY LY 5 X)-
Vi, ‘ S (et

Using implicit function theorem I get:

OF OF

dJy oty dJ 9L
n_ OF g — ~ 9F -
st a_Jt st a_Jt

The key takeaway here is that how the competitive task allocation threshold J, moves
depends on g—i which depends on the shape of the relative productivity schedules % at

the task allocation threshold .J;, which I will elaborate more throughout the paper.

3.3 Equilibrium

For any range of tasks [NV — 1, N|, I consider the steady state equilibrium characterized by
11 equilibrium variables {C.Y, K, L, L™, L9, R, W, W™ W9 J} and the following 11 equi-
librium equations:

1. Y = K“L'™@

2. R= oz%

3. W=(1-a)r

12
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The key variable of interest in the task-based model is the endogenous task allocation

threshold .J which is defined uniquely in the equilibrium.

. - Wg
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¥

w=w(J,N)
Tasks, j

0 J

Figure 4. Static Equilibrium

In the above equilibrium diagram, the upward-sloping curve represents the relative pro-
ductivity schedules of green to traditional labor that is increasing in j by assumption and
the downward sloping curve is derived from the relative demand for green-skilled labor

given in equation (11).

13



3.4 Social Planner’s Problem

I now consider the social planner’s problem who can freely choose the allocation of dif-
ferent types of labor to find the first best solution. The social planner internalizes the
environment externalities green input generates and chooses the demand of traditional
and green input for each task deciding the final allocation of the two types of input. The

tirst best solution is given by solving the following maximization problem:

Jy N N
max InY; +1In <1 - / I7,dj — / litdj) + 14 ,dj
Ji Ji

{l;'l,t’l?,tf‘]te[N_LN]} N—1

Jy - N o =1
s.t. Y, = (/ (V13 > dj +/ (vfl?t)T dj) , U, >0, lit > 0.
N-1

Jt

Taking first order conditions and solving for .J,,,, I show in the appendix B.2 that J, < J..

SP’s traditional labor SP’s green-skilled labor

&
[ T

°
T
N -1 Jsp  Jee N
S
greenness index(j)

Figure 5. The task space showing J, < J.

Proposition 1. In addition to effective cost in terms of cost and productivity, when a social plan-
ner also takes into account the environmental externality, optimal allocation implies allocation of

more tasks to green inputs relative to traditional inputs.*

3.5 Implementation

In this section, I design task-specific green wage subsidies to implement a lower task-
allocation threshold J,,. The subsidy is intended to offset the productivity disadvantage
of green inputs in certain tasks by incorporating their environmental benefits. This design
explicitly weighs the trade-off between potential productivity losses (when green inputs
are less efficient) and significant environmental gains. In cases with large productivity
differences but also large environmental benefits, the subsidy must balance these factors

to ensure net welfare gains.

“See appendix B for the derivation.
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Proposition 2. A social planner can implement a lower task-allocation threshold J,, < J..(L", L)

using the following task-specific green input subsidy:®

g _

0 if7 < Jsp
T =

J Yin ") o
=S5 20 Hi>Jy

The main logic behind this policy design is that the subsidy increases the cost-competitiveness
of green input for tasks where it’s less productive than traditional input, considering the
added environmental benefits, thereby promoting its usage and helping achieve the social

planner’s goal of a lower Jg,,.

3.5.1 Comparative statics of subsidy

Normalizing the traditional productivity 7" (j) equal to 1 and writing the size of the sub-

= g
sidy with respect of input cost premium W = 3=, relative productivity schedule 7 = ;y—ib,

J
and environmental externality ¢, we get:

. . . . = or?d . . .
* With respect to relative input cost premium, W' : % = m i.e. the subsidy size

increases with the cost premium between the green input and the traditional input
it’s trying to substitute for is higher.

. . .. ord . . .
* With respect to relative productivity, 5 : =+ = W i.e. the subsidy size increases
with the relative productivity gap between the green and the traditional input.

. . . oty . . .
* With respect to environmental externality, ¢ : - = W(ﬁ1+ 7 Le. the subsidy size

increases with the size of the externality.

3.6 Effectiveness of target green input subsidies

The main takeaway so far is that the competitive market decides whether to deploy tradi-
tional or green inputs across tasks purely based on their effective cost and productivities,
without considering the environmental externality of using green input over the tradi-
tional one. So, if the green transition necessitates allocating more tasks of production
process to green inputs, akin to climate policy tools used in the U.S., such as those in the
Inflation Reduction Act (IRA), I consider the targeted subsidy to the green input cost and

assess its effectiveness in promoting the use of green inputs under this framework.

>See appendix B.3 for the details about the implementability of 7.
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3.6.1 Green input subsidy, 79

In a canonical model, either providing cost subsidy 79 for green input or imposing tax 7"
for traditional input would reduce the effective relative cost of deploying green input for
firms, which would in turn increase the demand and equilibrium use of green inputs. In
case of the task-based approach, because of the task allocation effect, the exact effect of
subsidy is not straightforward.

Proposition 3. The effectiveness of green wage subsidy in task allocation depends on € s v the

v

elasticity of the comparative advantage schedule at the task threshold J.
Adding green wage subsidy 79 to the endogenous task threshold equation in (3):

g 1 — 799
J 7—i = d-r)Wwe = (1 —79), where at .J.. by HH’s FOC.
Vg wr
This means ] is defined implicity by: F' = 1—% —(1—79).

By implicit function theorem:

drg oL —

a1 ¢
77

Here, what is new in the task-based approach is that the effectiveness of the wage sub-

sidy on moving the task-allocation threshold depends on €. ; which depends on the
functional form of the comparative advantage schedule.

4 Calibration and Simulation

4.1 Calibration

The qualitative analysis demonstrates that the functional form of comparative advantage
schedules between green and traditional inputs critically affects the effectiveness of tar-
geted subsidies in task allocation. To quantify this mechanism, I conduct a calibration
exercise using empirical data. The model is calibrated to an initial steady state without
subsidies. Standard economic parameters follow established conventions in the real busi-
ness cycle literature: capital share () is set to 0.33, discount rate (3) to 0.99, and capital
depreciation rate (9) to 0.025. The labor disutility weight (1) is normalized to 1, reflecting

the conventional balance between labor supply and leisure.
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The model introduces several novel parameters. The elasticity of substitution be-
tween green and traditional units () is set to 1.5, based on Papageorgiou, Saam, and
Schulte (2017), who estimate this parameter to be greater than 1 and close to 2, consistent
with Acemoglu and Restrepo (2019). The positive externality parameter (), representing
the weight of environmental quality relative to private consumption, is set to 0.4 fol-
lowing Angelopoulos et al. (2010), justified as being towards the upper bound typically
assigned to public goods in comparable utility functions. This corresponds to a 1.4% in-
crease in consumption equivalent. I conduct sensitivity analyses with varying values of
this parameter.

The comparative advantage schedules for green and traditional inputs, 77 and 77,
are fundamental to the production structure. I employ the following general formulation

for the relative productivity schedule:

z—z: %withug >0,v, > 0,vy +1v, >0.
Following Acemoglu and Restrepo (2018) and Acemoglu, Manera, and Restrepo (2020a),
I normalize the productivity of the traditional input to 1 and consider the case % =A-J".

I calibrate the model incorporating two key empirical findings from Vona et al. (2018a):
green occupations are typically higher-skill and less routine-intensive than non-green
occupations. Based on these insights, I calibrate v, the parameter governing compara-
tive advantage of green labor across tasks, using two reference points: routine-intensity
distribution from automation literature and skill-intensity distribution from skill-biased
technical change literature. Following Acemoglu et al. (2020a), I use v = 2.12 for rou-
tine intensity, and following Marczak, Beissinger, and Brall (2022), I use v = 0.67 for
skill intensity. These values allow me to examine both concave and convex productivity
schedules, which significantly impact policy effectiveness.

For both specifications, I calibrate parameter A in the function % to match two U.S.
empirical targets: (i) task allocation threshold J (the share of tasks performed by tradi-
tional versus green-skilled labor) set at 0.806, based on Bowen, Kuralbayeva, and Tipoe
(2018)’s estimate that green jobs constitute 19.4% of employment, and (ii) the green wage
premium % of 2%, derived from Shibata, Mano, and Bergant (2022) estimates.

After calibrating the model, I simulate the impact of green input subsidies of varying
sizes on reducing the task allocation threshold favoring green inputs for two calibrated

productivity schedules. The results are presented below.
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4.2 Simulation and Policy Analysis

Policy Design: How to design subsidies to improve effectiveness?

* Exercise: Fix the total subsidy budget, vary task-specific green wage subsidies under
concave vs. convex relative-productivity schedules (), and record the resulting task

threshold J and green-input share.
* Goal: Identify where each subsidy dollar shifts the most tasks to green inputs.

* Result: Subsidies are most effective when the productivity gap is narrowest.
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The simulations show how subsidy effectiveness depends on relative productivity
and the initial task cutoff .J:

* Concave schedule @—Zconcave): At low J, a small drop in J causes a large productivity
J
loss for green inputs, so green demand rises only modestly when costs fall. At higher

J, the same cost drop yields a much larger increase in green-input demand.

* Convex schedule (jy—%convex): At low J, you need a big reduction in J to lower rela-
tive productivity, so subsidies have little effect until .J falls enough. At higher .J, cost

changes more directly boost green demand.

Figure 8 highlights this relationship. Starting from a high steady-state J = 0.8, the
productivity gap is narrower under the concave shape than under the convex shape, mak-

ing a 20% subsidy (comparable to Casey et al. (2023)) more effective for the concave case.
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Effects of Inputs Relative Productivity on 20% Clean Subsidy Effectiveness
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Figure 8. Varying effectiveness of relative productivity parameter v on task threshold .J

4.3 Welfare Analysis

A central question in climate-macro research concerns optimal subsidy financing meth-
ods and their general equilibrium welfare implications. This section presents a compre-
hensive welfare analysis of green input subsidies under different financing schemes. I
employ numerical solutions to track changes in model variables between steady states
and quantify their impact on overall welfare as percentage changes relative to the initial
(no-subsidy) steady state.

I calculate the necessary percentage change in initial consumption (w) to equalize
welfare across states:

W, =(1-w) =100

st., {[In(wC) +nln(l — LI — L") + L] — [In(C") + nln(1 — LY — L") + L]} = 0.
The value of IV, provides a welfare comparison metric: a positive IV, indicates higher
aggregate welfare in the initial steady state, meaning consumption would need to be re-
duced by W, percent to match the utility level in the new steady state.

4.3.1 Productivity vs. Environmental Tradeoff

Reducing the task allocation threshold J involves a fundamental tradeoff: positive en-

vironmental benefits come at the cost of productivity losses as tasks are reallocated to
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relatively less productive factors. In scenarios where the productivity gap is large but the
environmental benefit (captured by ) is also significant, the net welfare impact depends
on the balance between these effects. Consequently, welfare gains depend critically on

the magnitude of positive environmental externalities.

Policy Trade-off: How large must the environmental externality be for subsidies to improve wel-
fare?

* Exercise: Fix a 5 % green-skilled labor subsidy and vary the externality parameter ).

Compute total welfare changes using

ow oY B n [8L9 N 8L"] " oL9
oJ 0J 1—Lr—L9loJ oJ 0J
—~ < - ———

productivity effect labor reallocation effect environmental benefit

Plot welfare versus ¢ (Figure 9) and calculate the consumption-equivalent gain at the
cutoff.

* Goal: Identify the minimum ¢ (environmental-externality magnitude) at which the 5

% subsidy yields a positive welfare change.

* Result: Welfare becomes positive only when ¢) ~ 1.2, equivalent to a 4.3 % consumption-

equivalent gain.

0.4 Welfare Loss vs ¢ for 5% Green Wage Subsidy (Lump-sum Tax)
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Figure 9. Welfare for different values of externality parameter ¢

From figure 9, we see that the welfare change becomes negative (i.e., a consumption-

equivalent gain) once 1) reaches about 1.2. Below ¢ = 1.2, welfare losses are positive—meaning
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the subsidy’s productivity costs exceed its environmental benefits—whereas at and above
1 = 1.2, the welfare loss turns negative, indicating a net welfare gain. This threshold
is more than twice the range (0.2-0.5) typically used for public-good parameters in the
macro-public literature. To illustrate this cutoff intuitively, I compute its consumption
equivalent: at ) = 1.2, the positive externality of green-skilled labor is equivalent to a
4.3% increase in consumption.

The elasticity of substitution x between tasks strongly affects this result: higher x
makes it easier to shift away from polluting tasks, so a given externality yields larger
welfare gains. The key role of x in climate-macro analysis is well documented (e.g.,
Acemoglu, Aghion, Bursztyn, and Hemous, 2012; Casey et al., 2023; Cruz and Rossi-
Hansberg, 2024). To illustrate, I vary x from 0.5 to 2 and calculate the consumption-
equivalent value at i) = 1.21 for each case.

Figure 10 shows that when y is low (around 0.5-1.0), tasks are hard to reallocate, so
the same externality yields a small or even negative welfare gain. As x rises above 1,
tasks become easier to switch from “dirty” to “green,” and the welfare boost grows. In
other words, for a fixed 1) = 1.21, the consumption-equivalent benefit increases with v,
confirming that greater task substitutability amplifies the welfare payoff of the externality.

Impact of Substitutability of tasks on Consumption Equivalent
T T T

1.21(%)

Consumption Equivalent of externality cutoff 2

2 Il Il Il
0.5 1 1.5 2 25
Substitutability between tasks (y)

Figure 10. Consumption equivalent of ¢ = 1.21 vs. elasticity of substitution of tasks

Policy Financing: Which tax base funds subsidies with the least welfare loss?

* Exercise: For subsidies of 1-10 % of output, compute the required tax rates and welfare
costs under three financing methods—labor-income tax, capital-income tax, and lump-

sum tax. Present tax rates in Figure 11 and welfare losses in Figure 12.
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* Goal: Determine which tax base generates the smallest distortion for funding green
subsidies.

* Result: Lump-sum taxation yields the lowest welfare loss, capital taxation is second-
best, and labor taxation is most costly.

Tax Sizes for Different Subsidy Rates (psi=0.4) Welfare Loss for Different Subsidy Funding Methods (psi=0.4)
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Figure 11. Tax Sizes for Different Subsidy Figure 12. Welfare costs for different financ-
Rates (psi=0.4) ing methods

The first figure shows that the capital-tax rate must be set highest to fund a given subsidy,
followed by the labor-tax rate, while the lump-sum charge is lowest. In the second figure,
interestingly financing green subsidies with a labor-income tax produces larger welfare
losses than using a capital-income tax, which counteracts the classic Chamley—Judd result
that capital should bear no tax in the long run because it is the most distortionary base
(Chamley, 1986; Judd, 1985). In this task-based model, labor is the factor most closely
tied to adopting green inputs; taxing it directly raises the marginal cost of completing
greener tasks and amplifies the misallocation. A capital-income tax, by contrast, is partly

absorbed by traditional inputs and therefore distorts the greenness margin less.

5 Conclusion

This paper presents a task-based general-equilibrium model with a continuous greenness
index to evaluate targeted green-input subsidies. By modeling production as a contin-
uum of tasks rather than a binary “green versus dirty” split, the framework uncovers a
market failure: competitive markets allocate too few tasks to green inputs, justifying cor-

rective subsidies. The model is structured to answer three key aspects of subsidy (fiscal)
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policy—design, trade-off, and financing—by showing where subsidies are most effective,
under what environmental-productivity conditions they improve welfare, and which tax
base funds them with the least distortion.

First, subsidy effectiveness hinges on the productivity gap between green and tradi-
tional inputs. When that gap is narrow, even modest subsidies can shift many tasks to-
ward greener methods. Policymakers should therefore target sectors where green inputs
already approach traditional productivity and pair subsidies with R&D or infrastructure
support to close any remaining gaps. Second, calibrated to U.S. data, a 5% green-labor
subsidy yields net welfare gains only if the environmental externality parameter ) ex-
ceeds about 1.2—roughly three times the standard public-goods benchmark—and corre-
sponds to a 4.3% consumption-equivalent benefit. This threshold falls as the substitution
elasticity  rises, since higher x makes it easier to switch tasks to green inputs. Third,
among lump-sum, labor-income, and capital-income taxes, lump-sum financing imposes
the smallest welfare loss, capital taxes are second-best, and labor taxes are most distor-
tionary.

These findings can help shape fiscal policy for the green transition. By showing
where subsidies have the biggest environmental and economic impact, governments can
design more efficient green stimulus programs that ease budget pressure and avoid finan-
cial strain. Future work could expand the model to include changing productivity, other
inputs (like capital or energy), and explore how green subsidies interact with monetary

and macroprudential policies in this framework.
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Appendix

Note: All time indices have been removed from the derivations for simplicity.

A Firms

A.1 Final goods

I start by solving for the profit maximization of the final goods producer.

max P(K*L'™®) — RK — WL
K,L

Normalizing the final price P to 1 and taking FOCs w.r.t. K and L gives:
Y

Y

17 and W=(1-a)
A.2 Labor Services
A.2.1 Demand for task j

First, I find a demand function for ¢; by minimizing consumption cost.
N

max WL — / pjt; dj

N-1

N x=1 ﬁ N
max W (/ ;" dj) —/ pit; dj
tj N-1 N-1
_ N =
P\ X 1—y ;. x
fo— <_> where W = / X :
] W where ( N71p] [y

Taking FOCs w.r.t. ¢; gives:
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A.3 Task aggregator
A.3.1 Demand for different tasks

I will first derive the demand for different factors for each task.

J
max WL — Wl"dj—/ Wyld dj
. N-1
J e
s.t.L:(/ (;‘l;‘)xcl]—{—/(glg)xclj)
N-1 J
Taking FOCs give:

n nn\ — % n\Y— Wn X
=75 - () = T = () 1(W) .

" (W)
= i :(’Y?)Xl(wg) L

Therefore, the optimal green input cost is:

N %% —-X
[wrs - [ (5) o
J

N
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—1
— ¢ (49

Finally, the optimal non-green input cost is:

J
Wl dj

N-1

J W -X
W, n\x—1 n :

N-1

J
= [ eprgwions
N-1
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A.3.2 Task aggregator price

I now turn to deriving the expression for the price for an aggregated task, IV, by solving

the cost minimization problem. I assume a perfectly competitive market.

J N
WL= | W,dj+ / W,l? dj
N-1 J
J

W —X N W —X
— W, (vt 22) L W, (v =2)  Ldj
- (77) (W) J+/J a(77) (W) lj

o /J (Y + Wi /N(vf’)x‘ldj
WX oY WX J,

N

J
= Wi X=Wlx /N l(vf)x_l dj + ng_X/J (’Y?)X_l dj

N

J T-x
cw = [ et ewe [Copca)
N-1 J

A4 Aggregation
A.41 Aggregate demand of labor

I have from the above sections alongside the normalized I7* = (y7)¥"! (%) " L and
19% = (yI ! (%) L Aggregating across non-green tasks [V — 1, J|, I get the aggregate
demand for the non-green labor:

J
L :/ 1 dj
N-1
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Aggregating across green tasks (.J, N|, I get the aggregate demand for the green labor:

N
L — / 12* dj
J

N
S

N
— L = YW X /J (2 dj

— = ) ([ )

The ratio of aggregate demand for green to non-green labor is given by:

Lo YWx [ ()1 dj
Ln YW X [o ()1 dj

_ ety (%)_X

le PXtd W,

And, the resulting relative factor productivity for labor is:

Wy _ <L> S G dj
W Lo fN—l 7]’ X 1dj

Since the final good is the numeraire, and the final good price P is normalized to 1:

1

J N T—x
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B Social Planner Problem

B.1 First best solution if planner chooses task-level labor allocation

J N N
max InY +nln 1—/ l”dj—/ 19 dj +¢/ 19 dj
{1719, J€[N~1,N]} No1 7 g 7 7’

; L N
st Y = (/ ()5 dj+/ (79195 dj) . >0, 12>0.
J

N-1

Taking first order conditions, I get:
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Using the third FOC,
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g9
by assumption ;{—i is increasing in j, this together with the social planner’s solution implies
J

Jop < Jee.
B.2 First best solution if planner chooses aggregate labor allocation

InY In(l—-L"— L9 L
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Taking first order conditions, I get:
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o (L} YR )T (LD ) = g

Equating the two FOCs,

YR (LY (/]Vil(yy)xl dj)i = Y5 (L9 (/]N(vf)X1 dj) 4
- (%)<I£N(Zv)>dzly> ~ Ty (fmfﬁx—ldj)x
(

L_) AR AS
Ly (X dj

N-1

This implies J;, < Jg.

B.3 Implementability of task-specific green wage subsidy
The task-specific wage subsidy under consideration is:

7.9{0 ifj<J,

J Yin ") e
L= Yo 20 #i>Jy

For implementability, I need to show for any J < J.(L", L9), the above subsidy
generates a CE with factor prices W" = Y. (L", L9; J) and W9 = Y4(L", L9; J) where all
tasks below .J are produced using non-green labor.
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I use similar steps to Acemoglu, Manera, and Restrepo (2020b) to show this. With

the above subsidy in place, the unit cost of producing task j with green labor becomes:

w9 e -

pg _ ? lf] > J
J —THOWI ir -

(1 'ng) lf] < J

Forall j € [0,J),J < Je (L™, L9), so

g g

; Y, Yin Y
’y—i < % = Y = fL < ng = pj = all tasks produced with non-green labor.
Py‘] P}/Jce YL” P)/Jce F}/Jce

Forall j € [J, 1),

g g

‘ 1—-719)Y) Yin Y
7_; > PY;]L“ = ( Yo = p; = 5 > ; - = pj = all tasks produced with green-skilled labor.
T Ve Yin Vee Ve

The market clears as:

J T (pr)x J
L”Z/ l?df=Y/ J—dj=YW;X/ ()t dj

n
N-1 N-1 7 N-1

N TP N
Lff:/ 19 dj:Y/ " dj:YWg‘X/ ()t dj
J N—-1 7j J

Both conditions hold with equation when W" = Y;» and W9 = Y;,. This proves the
implementation strategy.
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